

Geometry-Aware Symmetric Domain Adaptation for Monocular Depth Estimation

Challenge

- The depth labels are expensive to acquire in supervised learning. **Solvable:** Exploring unsupervised cues.
- 2. It tends to be vulnerable to illumination change, occlusion, etc. **Solvable:** Exploiting synthetic data with ground truth depth.
- The model fails to perform well on real data due to the domain shift. **Solvable:** Utilizing domain adaptation techniques, like GAN based image-to-image translation.

Existing Methods

Overlooking the specific geometric structure in real domain.

Our Solution

Undesirable distortions introduced by the I2I translation process.

Exploring *the labels in the* synthetic data and epipolar geometry in the real data jointly (**GASDA**).

Contributions

- We propose a novel geometry-aware symmetric domain adaptation network by exploiting the epipolar geometry of the stereo images.
- The proposed model can generate high-quality results for *both* image style translation and depth estimation.

Shanshan Zhao,

Huan Fu,

Mingming Gong,

2. Network Architecture

 F_s/F_t : depth estimator trained on {Syn, Real2Syn}/{Real, Syn2Real}.

Dacheng Tao

LONG BEACH CALIFORNIA June 16-20, 2019

3. Experimental Results

Quantitative Results on KITTI

)ata set	Cap	Error Metrics (lower, better)				Accuracy Metrics (higher, better)		
alasei		Abs Rel	Sq Rel	RMSE	RMSE log	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^3$
K	80m	0.203	1.548	6.307	0.282	0.702	0.890	0.958
Κ	80m	0.202	1.614	6.523	0.275	0.678	0.895	0.965
Κ	80m	0.208	1.768	6.856	0.283	0.678	0.885	0.957
K+CS	80m	0.198	1.836	6.565	0.275	0.718	0.901	0.960
Κ	80m	0.113	0.741	4.621	0.189	0.862	0.960	0.986
Κ	80m	0.148	1.344	5.927	0.247	0.803	0.922	0.964
S	80m	0.253	2.303	6.953	0.328	0.635	0.856	0.937
Κ	80m	0.158	1.151	5.285	0.238	0.811	0.934	0.970
+S(DA)	80m	0.214	1.932	7.157	0.295	0.665	0.882	0.950
+S(DA)	80m	0.167	1.257	5.578	0.237	0.771	0.922	0.971
+S(DA)	80m	0.152	1.044	5.065	0.230	0.820	0.940	0.972
Κ	50m	0.117	0.597	3.531	0.183	0.861	0.964	0.989
Κ	50m	0.169	1.080	5.104	0.273	0.740	0.904	0.962
Κ	50m	0.140	0.976	4.471	0.232	0.818	0.931	0.969
S	50m	0.244	1.771	5.354	0.313	0.647	0.866	0.943
Κ	50m	0.151	0.856	4.043	0.227	0.824	0.940	0.973
+S(DA)	50m	0.203	1.734	6.251	0.284	0.687	0.899	0.958
+S(DA)	50m	0.162	1.041	4.344	0.225	0.784	0.930	0.974
+S(DA)	50m	0.168	1.199	4.674	0.243	0.772	0.912	0.966
+S(DA)	50m	0.146	0.784	3.895	0.219	0.832	0.945	0.975

Some Examples

nd Truth	Eigen <i>et.al.</i> [9]	Zhei	ng <i>et.al.</i> [55]	GASDA	
7] G.	ASDA Synti	hetic Image	CycleGAN[57	7] GASDA	